skka3134

skka3134

email
telegram

在Pytorch中使用lstm預測amzon股票價格

使用 WSL

安裝 python 擴展
image

安裝依賴

sudo apt update
sudo apt upgrade
sudo apt install python3-pip
sudo apt install python3-pandas
pip3 install torch
pip3 install numpy
pip3 install scikit-learn

導入

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
from sklearn.preprocessing import MinMaxScaler
from torch.utils.data import Dataset

加載數據

data = pd.read_csv('AMZN.csv')

image

取出其中的日期和收盤價

data = data[['Date', 'Close']]

選擇我們使用的設備是 cpu 還是 gpu

device = 'cuda:0' if torch.cuda.is_available() else 'cpu'

image

準備一個數據框,我們用前七天的收盤價預測後一天的收盤價

def prepare_dataframe_for_lstm(df, n_steps):
    df = dc(df)
    df.set_index('Date', inplace=True)
    for i in range(1, n_steps+1):
        df[f'Close(t-{i})'] = df['Close'].shift(i)
    df.dropna(inplace=True)
    return df
lookback = 7
shifted_df = prepare_dataframe_for_lstm(data, lookback)

image

轉換成 numpy

shifted_df_as_np = shifted_df.to_numpy()

image

縮放數據 - 1 到 1 之間

scaler = MinMaxScaler(feature_range=(-1, 1))
shifted_df_as_np = scaler.fit_transform(shifted_df_as_np)

image

處理數據,x 是輸入值,矩陣的第一列, y 是輸出值,矩陣的後面 7 列。

X = shifted_df_as_np[:, 1:]
y = shifted_df_as_np[:, 0]

翻轉 x 在水平軸上的鏡像

X = dc(np.flip(X, axis=1))

分割,其中的百分之 95 用來訓練,百分之 5 用來測試

X = dc(np.flip(X, axis=1))
split_index = int(len(X) * 0.95)
X_train = X[:split_index]
X_test = X[split_index:]
y_train = y[:split_index]
y_test = y[split_index:]

重塑矩陣得到維度

X_train = X_train.reshape((-1, lookback, 1))
X_test = X_test.reshape((-1, lookback, 1))
y_train = y_train.reshape((-1, 1))
y_test = y_test.reshape((-1, 1))

將 numpy 中的所有數據轉變成 tensor

X_train = torch.tensor(X_train).float()
y_train = torch.tensor(y_train).float()
X_test = torch.tensor(X_test).float()
y_test = torch.tensor(y_test).float()

創建數據集

class TimeSeriesDataset(Dataset):
    def __init__(self, X, y):
        self.X = X
        self.y = y
    def __len__(self):
        return len(self.X)
    def __getitem__(self, i):
        return self.X[i], self.y[i]
train_dataset = TimeSeriesDataset(X_train, y_train)
test_dataset = TimeSeriesDataset(X_test, y_test)

加載數據集

from torch.utils.data import DataLoader
batch_size = 16
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)

搭建 lstm 模型

class LSTM(nn.Module):
    def __init__(self, input_size, hidden_size, num_stacked_layers):
        super().__init__()
        self.hidden_size = hidden_size
        self.num_stacked_layers = num_stacked_layers

        self.lstm = nn.LSTM(input_size, hidden_size, num_stacked_layers, 
                            batch_first=True)
        
        self.fc = nn.Linear(hidden_size, 1)

    def forward(self, x):
        batch_size = x.size(0)
        h0 = torch.zeros(self.num_stacked_layers, batch_size, self.hidden_size).to(device)
        c0 = torch.zeros(self.num_stacked_layers, batch_size, self.hidden_size).to(device)
        
        out, _ = self.lstm(x, (h0, c0))
        out = self.fc(out[:, -1, :])
        return out

model = LSTM(1, 4, 1)
model.to(device)

定義參數

learning_rate = 0.001
num_epochs = 10
loss_function = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

創建訓練函數

def train_one_epoch():
    model.train(True)
    print(f'Epoch: {epoch + 1}')
    running_loss = 0.0
    
    for batch_index, batch in enumerate(train_loader):
        x_batch, y_batch = batch[0].to(device), batch[1].to(device)
        
        output = model(x_batch)
        loss = loss_function(output, y_batch)
        running_loss += loss.item()
        
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if batch_index % 100 == 99:  # print every 100 batches
            avg_loss_across_batches = running_loss / 100
            print('Batch {0}, Loss: {1:.3f}'.format(batch_index+1,
                                                    avg_loss_across_batches))
            running_loss = 0.0
    print()

創建測試函數

def validate_one_epoch():
    model.train(False)
    running_loss = 0.0
    
    for batch_index, batch in enumerate(test_loader):
        x_batch, y_batch = batch[0].to(device), batch[1].to(device)
        
        with torch.no_grad():
            output = model(x_batch)
            loss = loss_function(output, y_batch)
            running_loss += loss.item()

    avg_loss_across_batches = running_loss / len(test_loader)
    
    print('Val Loss: {0:.3f}'.format(avg_loss_across_batches))
    print('***************************************************')
    print()

循環

for epoch in range(num_epochs):
    train_one_epoch()
    validate_one_epoch()

image

可視化

with torch.no_grad():
    predicted = model(X_train.to(device)).to('cpu').numpy()
plt.plot(y_train, label='Actual Close')
plt.plot(predicted, label='Predicted Close')
plt.xlabel('Day')
plt.ylabel('Close')
plt.legend()
plt.show()

image

載入中......
此文章數據所有權由區塊鏈加密技術和智能合約保障僅歸創作者所有。