WSL の使用
python 拡張のインストール
依存関係のインストール
sudo apt update
sudo apt upgrade
sudo apt install python3-pip
sudo apt install python3-pandas
pip3 install torch
pip3 install numpy
pip3 install scikit-learn
インポート
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
from sklearn.preprocessing import MinMaxScaler
from torch.utils.data import Dataset
データの読み込み
data = pd.read_csv('AMZN.csv')
日付と終値を抽出
data = data[['Date', 'Close']]
使用するデバイスを cpu または gpu に選択
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
データフレームを準備し、前の 7 日間の終値を使って翌日の終値を予測
def prepare_dataframe_for_lstm(df, n_steps):
df = dc(df)
df.set_index('Date', inplace=True)
for i in range(1, n_steps+1):
df[f'Close(t-{i})'] = df['Close'].shift(i)
df.dropna(inplace=True)
return df
lookback = 7
shifted_df = prepare_dataframe_for_lstm(data, lookback)
numpy に変換
shifted_df_as_np = shifted_df.to_numpy()
データを - 1 から 1 の間にスケーリング
scaler = MinMaxScaler(feature_range=(-1, 1))
shifted_df_as_np = scaler.fit_transform(shifted_df_as_np)
データを処理、x は入力値、行列の最初の列、y は出力値、行列の後の 7 列。
X = shifted_df_as_np[:, 1:]
y = shifted_df_as_np[:, 0]
x を水平方向に反転
X = dc(np.flip(X, axis=1))
分割、95% を訓練に、5% をテストに使用
X = dc(np.flip(X, axis=1))
split_index = int(len(X) * 0.95)
X_train = X[:split_index]
X_test = X[split_index:]
y_train = y[:split_index]
y_test = y[split_index:]
行列を再形成して次元を得る
X_train = X_train.reshape((-1, lookback, 1))
X_test = X_test.reshape((-1, lookback, 1))
y_train = y_train.reshape((-1, 1))
y_test = y_test.reshape((-1, 1))
numpy のすべてのデータをテンソルに変換
X_train = torch.tensor(X_train).float()
y_train = torch.tensor(y_train).float()
X_test = torch.tensor(X_test).float()
y_test = torch.tensor(y_test).float()
データセットを作成
class TimeSeriesDataset(Dataset):
def __init__(self, X, y):
self.X = X
self.y = y
def __len__(self):
return len(self.X)
def __getitem__(self, i):
return self.X[i], self.y[i]
train_dataset = TimeSeriesDataset(X_train, y_train)
test_dataset = TimeSeriesDataset(X_test, y_test)
データセットを読み込む
from torch.utils.data import DataLoader
batch_size = 16
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
lstm モデルを構築
class LSTM(nn.Module):
def __init__(self, input_size, hidden_size, num_stacked_layers):
super().__init__()
self.hidden_size = hidden_size
self.num_stacked_layers = num_stacked_layers
self.lstm = nn.LSTM(input_size, hidden_size, num_stacked_layers,
batch_first=True)
self.fc = nn.Linear(hidden_size, 1)
def forward(self, x):
batch_size = x.size(0)
h0 = torch.zeros(self.num_stacked_layers, batch_size, self.hidden_size).to(device)
c0 = torch.zeros(self.num_stacked_layers, batch_size, self.hidden_size).to(device)
out, _ = self.lstm(x, (h0, c0))
out = self.fc(out[:, -1, :])
return out
model = LSTM(1, 4, 1)
model.to(device)
パラメータを定義
learning_rate = 0.001
num_epochs = 10
loss_function = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
訓練関数を作成
def train_one_epoch():
model.train(True)
print(f'Epoch: {epoch + 1}')
running_loss = 0.0
for batch_index, batch in enumerate(train_loader):
x_batch, y_batch = batch[0].to(device), batch[1].to(device)
output = model(x_batch)
loss = loss_function(output, y_batch)
running_loss += loss.item()
optimizer.zero_grad()
loss.backward()
optimizer.step()
if batch_index % 100 == 99: # 100バッチごとに出力
avg_loss_across_batches = running_loss / 100
print('Batch {0}, Loss: {1:.3f}'.format(batch_index+1,
avg_loss_across_batches))
running_loss = 0.0
print()
テスト関数を作成
def validate_one_epoch():
model.train(False)
running_loss = 0.0
for batch_index, batch in enumerate(test_loader):
x_batch, y_batch = batch[0].to(device), batch[1].to(device)
with torch.no_grad():
output = model(x_batch)
loss = loss_function(output, y_batch)
running_loss += loss.item()
avg_loss_across_batches = running_loss / len(test_loader)
print('Val Loss: {0:.3f}'.format(avg_loss_across_batches))
print('***************************************************')
print()
ループ
for epoch in range(num_epochs):
train_one_epoch()
validate_one_epoch()
可視化
with torch.no_grad():
predicted = model(X_train.to(device)).to('cpu').numpy()
plt.plot(y_train, label='Actual Close')
plt.plot(predicted, label='Predicted Close')
plt.xlabel('Day')
plt.ylabel('Close')
plt.legend()
plt.show()