skka3134

skka3134

email
telegram

PytorchでLSTMを使用してAmazonの株価を予測する

WSL の使用

python 拡張のインストール
image

依存関係のインストール

sudo apt update
sudo apt upgrade
sudo apt install python3-pip
sudo apt install python3-pandas
pip3 install torch
pip3 install numpy
pip3 install scikit-learn

インポート

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
from sklearn.preprocessing import MinMaxScaler
from torch.utils.data import Dataset

データの読み込み

data = pd.read_csv('AMZN.csv')

image

日付と終値を抽出

data = data[['Date', 'Close']]

使用するデバイスを cpu または gpu に選択

device = 'cuda:0' if torch.cuda.is_available() else 'cpu'

image

データフレームを準備し、前の 7 日間の終値を使って翌日の終値を予測

def prepare_dataframe_for_lstm(df, n_steps):
    df = dc(df)
    df.set_index('Date', inplace=True)
    for i in range(1, n_steps+1):
        df[f'Close(t-{i})'] = df['Close'].shift(i)
    df.dropna(inplace=True)
    return df
lookback = 7
shifted_df = prepare_dataframe_for_lstm(data, lookback)

image

numpy に変換

shifted_df_as_np = shifted_df.to_numpy()

image

データを - 1 から 1 の間にスケーリング

scaler = MinMaxScaler(feature_range=(-1, 1))
shifted_df_as_np = scaler.fit_transform(shifted_df_as_np)

image

データを処理、x は入力値、行列の最初の列、y は出力値、行列の後の 7 列。

X = shifted_df_as_np[:, 1:]
y = shifted_df_as_np[:, 0]

x を水平方向に反転

X = dc(np.flip(X, axis=1))

分割、95% を訓練に、5% をテストに使用

X = dc(np.flip(X, axis=1))
split_index = int(len(X) * 0.95)
X_train = X[:split_index]
X_test = X[split_index:]
y_train = y[:split_index]
y_test = y[split_index:]

行列を再形成して次元を得る

X_train = X_train.reshape((-1, lookback, 1))
X_test = X_test.reshape((-1, lookback, 1))
y_train = y_train.reshape((-1, 1))
y_test = y_test.reshape((-1, 1))

numpy のすべてのデータをテンソルに変換

X_train = torch.tensor(X_train).float()
y_train = torch.tensor(y_train).float()
X_test = torch.tensor(X_test).float()
y_test = torch.tensor(y_test).float()

データセットを作成

class TimeSeriesDataset(Dataset):
    def __init__(self, X, y):
        self.X = X
        self.y = y
    def __len__(self):
        return len(self.X)
    def __getitem__(self, i):
        return self.X[i], self.y[i]
train_dataset = TimeSeriesDataset(X_train, y_train)
test_dataset = TimeSeriesDataset(X_test, y_test)

データセットを読み込む

from torch.utils.data import DataLoader
batch_size = 16
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)

lstm モデルを構築

class LSTM(nn.Module):
    def __init__(self, input_size, hidden_size, num_stacked_layers):
        super().__init__()
        self.hidden_size = hidden_size
        self.num_stacked_layers = num_stacked_layers

        self.lstm = nn.LSTM(input_size, hidden_size, num_stacked_layers, 
                            batch_first=True)
        
        self.fc = nn.Linear(hidden_size, 1)

    def forward(self, x):
        batch_size = x.size(0)
        h0 = torch.zeros(self.num_stacked_layers, batch_size, self.hidden_size).to(device)
        c0 = torch.zeros(self.num_stacked_layers, batch_size, self.hidden_size).to(device)
        
        out, _ = self.lstm(x, (h0, c0))
        out = self.fc(out[:, -1, :])
        return out

model = LSTM(1, 4, 1)
model.to(device)

パラメータを定義

learning_rate = 0.001
num_epochs = 10
loss_function = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

訓練関数を作成

def train_one_epoch():
    model.train(True)
    print(f'Epoch: {epoch + 1}')
    running_loss = 0.0
    
    for batch_index, batch in enumerate(train_loader):
        x_batch, y_batch = batch[0].to(device), batch[1].to(device)
        
        output = model(x_batch)
        loss = loss_function(output, y_batch)
        running_loss += loss.item()
        
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if batch_index % 100 == 99:  # 100バッチごとに出力
            avg_loss_across_batches = running_loss / 100
            print('Batch {0}, Loss: {1:.3f}'.format(batch_index+1,
                                                    avg_loss_across_batches))
            running_loss = 0.0
    print()

テスト関数を作成

def validate_one_epoch():
    model.train(False)
    running_loss = 0.0
    
    for batch_index, batch in enumerate(test_loader):
        x_batch, y_batch = batch[0].to(device), batch[1].to(device)
        
        with torch.no_grad():
            output = model(x_batch)
            loss = loss_function(output, y_batch)
            running_loss += loss.item()

    avg_loss_across_batches = running_loss / len(test_loader)
    
    print('Val Loss: {0:.3f}'.format(avg_loss_across_batches))
    print('***************************************************')
    print()

ループ

for epoch in range(num_epochs):
    train_one_epoch()
    validate_one_epoch()

image

可視化

with torch.no_grad():
    predicted = model(X_train.to(device)).to('cpu').numpy()
plt.plot(y_train, label='Actual Close')
plt.plot(predicted, label='Predicted Close')
plt.xlabel('Day')
plt.ylabel('Close')
plt.legend()
plt.show()

image

読み込み中...
文章は、創作者によって署名され、ブロックチェーンに安全に保存されています。